A little summary on the notation for recursive algorithms

Step 1: Define the header

Your algorithm has a name and it has variables. In the specification, we don't care about the types of the variables, you just write the name. The convention is L for lists, T for arrays, and small letters for numbers. For lists, you usually want to denote the first element in a special way, you call it the head and write it h; if you want to refer to the first two nodes, then n 1 and n 2 . Note that in a list, we use '.' To express a link: n1.n2.L means n 1 followed by n 2 followed by L (remainder of the list).

Algorithm show taking a list:
Algorithm compare taking two lists:
Algorithm isSorted taking a list:
Algorithm sum taking an array:
Algorithm add taking two numbers:

```
show(h.L)
compare(h1.L1, h2.L2)
isSorted(n1.n2.L)
sum(T)
add(a,b)
```


Step 2: Initializing extra variables in the header

When the user calls the algorithm, he just gives you what he needs. You may create extra variables, for example to keep track of something between the steps. So, your first algorithm is empty and all it does is to call the real one by initializing it.
Algorithm sum taking a List: it needs a variable for the sum.
$\operatorname{sum}(\mathrm{L}): \operatorname{sum}(\mathrm{L}, 0) \quad$ I call the real algorithms and initialize total to $0 . .$.
sum(h.L, total): Now I specify the algorithm, and by ' h ' I refer to the head.

Step 3: General case

Express the processing that you do in the general case. If you want the sum of a List, the general case means that there is a head, and the action is to go to the next element and add the data in the head to the total:

$$
\mathrm{h} \neq \varnothing \rightarrow \operatorname{sum}(\mathrm{L}, \text { total }+\mathrm{h})
$$

If you want to compare two lists L1 and L2 and count the number of elements in which they differ, then:

$$
\begin{gathered}
\mathrm{h} 1 \neq \varnothing^{\wedge} \mathrm{h} 2 \neq \varnothing \wedge \mathrm{h} 1 \neq \mathrm{h} 2 \rightarrow \operatorname{diff}(\mathrm{~L} 1, \mathrm{~L} 2, \text { total }+1) \\
\mathrm{h} 1 \neq \varnothing \wedge \mathrm{h} 2 \neq \varnothing \wedge \mathrm{h} 1=\mathrm{h} 2 \rightarrow \operatorname{diff(L1,L2,~total)}
\end{gathered}
$$

This means "if both lists have a head and the elements are different, then keep processing and say that one more element differs; if both lists have a head and the elements are the same, then keep processing". Use ${ }^{\wedge}$ for "and" (if you want several conditions altogether) and v for "or".

Step 4: When to stop

If you reach the end of your list, then the head is empty. You may have to return a result, but in any case you should stop. For example, to return the sum of the elements in the list:

$$
\mathrm{h}=\varnothing \rightarrow \text { total }
$$

If you have two counters c 1 and c 2 and you want to return "true" when c 1 appears more often than c2, and false otherwise, then:

$$
\begin{aligned}
& \mathrm{h}=\varnothing^{\wedge} \mathrm{c} 1>\mathrm{c} 2 \rightarrow \text { true } \\
& \mathrm{h}=\varnothing^{\wedge} \mathrm{c} 1 \leq \mathrm{c} 2 \rightarrow \text { false }
\end{aligned}
$$

Step 5: Check it

Firstly, check that it's written correctly: all the cases must be disjoint, so you cannot satisfy two at the same time. Secondly, check that it actually works: take a very small example, and process it.

Examples

Sum of the elements in a List. First version: the result is thrown outside.
sum(h.L):
$\mathrm{h}=\varnothing \rightarrow 0$
$\mathrm{h} \neq \varnothing \rightarrow \mathrm{h}+\operatorname{sum}(\mathrm{L})$
Sum of the elements in a List. Second version: the result is produced inside with a variable.
$\operatorname{sum}(\mathrm{L})$: $\operatorname{sum}(\mathrm{L}, 0)$
sum(h.L, total):
$\mathrm{h}=\varnothing \rightarrow$ total
$\mathrm{h} \neq \varnothing \rightarrow \operatorname{sum}(\mathrm{L}$, total+h)

Returning the list itself. First version: the result is thrown outside.
identical(h.L):
$\mathrm{h}=\varnothing \rightarrow \varnothing$
$\mathrm{h} \neq \varnothing \rightarrow$ h.identical(L)
Returning the list itself. Second version: the result is produced inside with a variable.
identical(L1): identital(L1, Ø)
identical(L1, L2):
$\mathrm{h}=\varnothing \rightarrow \mathrm{L} 2$
$\mathrm{h} \neq \varnothing \rightarrow$ identical(L1, L2.h)

Concatenating two lists. First version: the result is thrown outside.
concat(h1.L1, h2.L2):

$$
\begin{array}{ll}
\mathrm{h} 1=\varnothing \wedge \mathrm{h} 2 \neq \varnothing & \rightarrow \mathrm{h} 2 \cdot \operatorname{concat}(\varnothing, \mathrm{~L} 2) \\
\mathrm{h} 1=\varnothing \wedge & \mathrm{h} 2=\varnothing \\
\mathrm{h} 1 \neq \varnothing & \rightarrow \varnothing \\
& \rightarrow \mathrm{h} 1 \cdot \operatorname{concat}(\mathrm{~L} 1, \mathrm{~h} 2 \cdot \mathrm{~L} 2)
\end{array}
$$

Concatenating two lists. Second version: the result is produced inside with a variable. concat(L1, L2): concat(L1, L2, Ø)
concat(h1.L1, h2.L2, L):

$$
\begin{array}{ll}
\mathrm{h} 1=\varnothing^{\wedge} \mathrm{h} 2 \neq \varnothing & \rightarrow \operatorname{concat}(\varnothing, \text { L2, L.h2) } \\
\mathrm{h} 1=\varnothing \wedge \mathrm{h} 2=\varnothing & \rightarrow \mathrm{L} \\
\mathrm{~h} 1 \neq \varnothing & \rightarrow \mathrm{h} 1 . \operatorname{concat}(\mathrm{L} 1, \mathrm{~h} 2 . \mathrm{L} 2, \text { L.h1) }
\end{array}
$$

You can throw the result outside when it does not need further processing: the user will get what he asked for directly. If you need some processing, then it is better to keep the result going in variables and look at these variables when you reach the base case. For example, if you have a list of 0 s and 1 s and you want to know which appears more often, then keep track of what you've seen in a variable and analyze it in the base case to return true or false.

